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Abstract—The paper considers the divergent decision forest method based on achieving a higher
divergence in the forecast space compared to the standard random decision forest. It is based on
including a new tree Tx in the ensemble at each step, which is constructed based on minimizing
a special functional, which is the difference between the squared error of Tx and the squared
divergence of the forecasts Tx and the current ensemble. The method is a development of
similar previously developed methods that are intended for predicting numerical variables.
The paper presents the results of applying the divergent decision forest method to solving
classification problems that arise when creating recommender systems. The paper investigates
the dependence of the forecast efficiency on the tree depth and one of the key parameters of
the algorithm that regulates the contribution of two components to the minimized functional.
Studies have shown that the accuracy of the proposed technology significantly exceeds the
accuracy of the random decision forest and is close to the accuracy of the CatBoost method.
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1. INTRODUCTION

Methods based on the use of ensembles of regression or decision trees are one of the main
branches of modern machine learning and are actively used in solving various applied problems [1].
Two popular directions of ensemble algorithms can be distinguished: random forests [2] and
gradient boosting [3]. For both technologies, methods have been developed to solve both au-
tomatic classification problems and numerical variable prediction problems. When predicting a
target numerical variable Y based on features X1, . . . ,Xn, training is performed using the sample
S = {s1 = (y1, x1), . . . , sm = (ym, xm)}, where yj and xj are the values of the target variable Y
and the vector of feature values X1, . . . ,Xn of the object sj, respectively. Classification problems
with two disjoint classes can also be viewed as binary numeric variable prediction problems with
training from a similar type of sample. Let us formulate the main differences between gradient
boosting-based methods and random forests. In the random forest method, individual trees are
built independently. In this case, the tree at step k is aimed at predicting the target variable Y and
is constructed using the sample Sk obtained by the bagging procedures [4] and the random subspace
method [5]. The bagging procedure comes down to sample selection with replacement from S. The
random subspace method assumes the use of a random subset of the original feature set X1, . . . ,Xn

of a fixed size when training each new random forest tree. The output forecast of Âk, consisting
of k trees, is calculated as the average forecast over all trees included in the ensemble, that is,
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Âk = 1
k

∑k
j=1Aj. In the gradient boosting method, the optimal algorithm is sought as a linear

combination of regression trees ÂN = T0 + α1 × T1 + . . .+ αN × TN , where the original algorithm
T0 usually calculates a forecast identically equal to the average value of Y . At each step, a new
term αk×Tk is added to the current linear combination Âk−1 = A0 + α1 × T1 + . . .+ αk−1 × Tk−1.
The choice of the latter is made based on minimizing the loss function for the linear combination
Âk = T0 + α1 × T1 + . . .+ αk × Tk. That is achieved by using the gradient descent procedure.

Let L(Âk−1, S) be some loss function depending on the predictions computed by Âk−1 and the
true values of Y of objects S. Let us associate the predictions computed for objects S with the
variables z1, . . . , zm. According to the gradient descent method, the expected minimum L will be
achieved for the prediction at the kth step for object sj, provided

Âk(sj) = Âk−1(sj)− η
∂L

∂zj

∣∣∣∣∣
zj=Âk−1(sj)

.

However, the forecast in the specified form cannot be calculated for objects for which the true
value of yj is unknown, since the loss function and its partial derivatives are defined only for known
values of Y . Therefore, the authors of the method proposed to use instead of the values of gj their
forecasts calculated using a regression tree trained on a sample of {(g1, x1), . . . (gm, xj)}. This tree
becomes the tree Tk added to the linear combination. When training Tk, the bagging and the
random subspace procedures are used.

Currently, there are several modifications of gradient boosting, including XGBoost [6], Light-
GBM [7], CatBoost [8]. In contrast to gradient boosting, conservative versions of the random forest
method are widespread, i.e. the method remains virtually unchanged since its creation. At the
same time, there is no convincing evidence that the ensemble generation scheme used in random
forests is actually optimal when using simple averaging as an aggregation procedure.

2. CONSTRUCTION OF FORESTS WITH ENHANCED DIVERGENCE

In the [9–11] a new approach was proposed aimed at constructing an ensemble based on the
condition of minimizing forecast losses, calculated as the average forecasts for the ensemble. In
other words, the problem of selecting trees for the ensemble in such a way that the losses were as
minimal as possible when using Âk as a forecast was set. In this case, the usual root-mean-square
error was used as a loss functional:

L(S,A) =
1

m

m∑
j=1

(
yj − Âk(xj)

)2
.

It was shown that the mean squared error for the algorithm Ak is calculated by the formula

L(S, Âk) =
1

m

m∑
j=1

k∑
i=1

(yj − Ti(xj))
2 − 1

km

m∑
j=1

k∑
i=1

(
Âk(xj)− Ti(xj)

)2
. (1)

One can pose the problem of finding such a set of trees T1, . . . , Tk that achieves a minimum of
losses (1). This problem is extremely labor-intensive. However, a simple heuristic approach can
be used, when at each step a tree is added to the ensemble that simultaneously approximates the
dependence and is maximally distant from the current ensemble in terms of the calculated forecasts.
To implement this approach, in [9–11] it was proposed to add a tree Tk at step k, in which the
following functional would be as minimal as possible

Q(Tk, Âk, μ) =
1

m

m∑
j=1

(yj − Tk(xj))
2 − μ

1

m

m∑
j=1

(
Âk(xj)− Tk(xj)

)2
, (2)
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where μ is a parameter from the interval (0, 1). The functional Q(Tk, Âk, μ) can be rewritten as

Q(Tk, Âk, μ) =
1

m

m∑
j=1

(yj − Tk(xj))
2 − θ

1

m

m∑
j=1

(
Âk(xj)− Tk(xj)

)2
, θ =

k2μ

(k + 1)2
. (3)

Note that the minimum of the functional (2) is achieved if each point xj is associated with a
forecast toj equal to the value of the auxiliary variable tj which minimizes the function

(yj − tj)
2 − θ

(
Âk−1(xj)− tj

)2
.

It is easy to show that the necessary conditions for an extremum are satisfied in the case when

toj =
yj − θÂk−1(xj)

1− θ
. (4)

It is obvious that θ → 1 for k → ∞ and μ = 1, which leads to instability of the estimates by
formula (4). Thus, the additional factor μ ∈ (0, 1) is introduced. To find the optimal ensemble,
an approach was proposed in [10, 11], in which at step k a new tree Tk is added to the ensemble,
predicting the values toj calculated by formula (4) depending on the vector descriptions. The tree Tk

is trained using the sample {(to1, x1), . . . (tom, xm)}. The use of the hyperparameter μ, which affects
the efficiency of the constructed ensembles, is a heuristic technique. There is no theoretically
justified method for calculating the optimal value of μ. It is assumed that the optimal value of μ
can be selected as a result of experiments, which is one of the goals of this study.

3. APPLICATION FOR AUTOMATIC CLASSIFICATION

The approach described above is based on the use of quadratic loss functions and is intended
for solving problems of predicting numerical variables. However, the method can also be used to
solve automatic classification problems. When solving the latter, cross-entropy is usually used to
estimate the accuracy of the approximation of a dependence, i.e., a value proportional to the minus
logarithm of the likelihood function calculated based on the Bernoulli distribution. In the case
of a binary classification problem, the target value Y takes values from the set {0, 1}, where the
equality Y = 1 indicates membership in the target class K. Suppose that some tree T calculates
the probabilities of belonging to class K of objects from S = {s1 = (y1, x1), . . . , sm = (ym, xm)}.
Let pj be the probability of object sj belonging to the target class, calculated by tree T from its
description xj. The cross-entropy loss for tree T on sample S is estimated by the formula

L(T, S) = − ln
m∏
j=1

p
yj
j (1− pj)

1−yj = −
m∑
j=1

[yj ln pj + (1− yj) ln(1− pj)]. (5)

The losses according to the formula (5) are an analogue of the quadratic losses for the tree T at
the sample S and correspond to the left term in the formula (2). For the estimation involving the
deviation of the new tree Tk from the ensemble Ak, the following approach can be proposed. Let
pkj be the probability of the object sj belonging to the target class, calculated by the tree Tk from

its description xj; p̂
k
j be the probability of the object sj belonging to the target class, calculated

by the ensemble Ak. The deviation of the new tree from the ensemble is estimated by the formula

D(Tk, Ak, S) = − ln
m∏
j

(pkj )
p̂kj (1− pkj )

1−p̂kj =
m∑
j=1

[−p̂kj ln p
k
j − (1− p̂kj ) ln(1− pkj )].

To find the optimal values of probabilities pkj , the same approach can be used as in the case of
quadratic losses. At the first stage, the values po1, . . . , p

o
m are sought for which the minimum of the
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following functional is achieved

Q(Tk, Ak, S) = L(T, S)− μD(Tk, Ak, S).

Next, a new tree Tk is trained using the sample

{(po1, x1), . . . , (pom, xm)}.

The ensemble Ak at step k is unknown. Therefore, instead of Q(Tk, Ak, S), a similar functional can
be used

Q(Tk, Ak−1, S) = L(T, S)− μD(Tk, Ak−1, S). (6)

It is easy to show that the minimum of the functional (6) is achieved at

poj =
yj − μÂk−1(xj)

1− μ
. (7)

Unfortunately, using (7) leads to a violation of the condition poj ∈ [0, 1]. This condition can be
preserved by moving to the problem of conditional optimization. However, the latter leads to a
significant complication of the algorithm. A simpler solution is based on the use of formula (7)
with subsequent training of a new tree from the sample

{(po1, x1), . . . , (pom, xj)}. (8)

To separate the classes, the estimate of the value pj is compared with a threshold, for the search
of which ROC analysis tools are used. We will further call this method a divergent decision forest
(DDF).

4. APPLICATION TO RECOMMENDER SYSTEMS

The method proposed in the previous sections depends on a set of hyperparameters, which in-
clude both the multiplier μ and the hyperparameters used in the construction of individual trees.
The successful application of most machine learning methods depends on the selected values of the
hyperparameters. At the same time, accurate theoretical estimates for the choice of hyperparam-
eters are usually absent. Therefore, their optimal values have to be sought through experiments
with data. The goal of this work was an experimental search for optimal values of hyperparameters
for a divergent decision forest. The studies were carried out in the context of solving problems of
predicting user preferences that arise when creating recommender systems. The choice of this class
of problems is associated with both the widespread use of recommender systems in various sectors
of the economy, and with the intensive use of machine learning methods in this area [12]. Three
problems of assessing the preferences of Internet users when choosing a computer game and two
problems of assessing the preferences of Internet users when choosing a sticker in social networks
were considered. The assessment was based on information about the interaction of users with
the corresponding catalogs. The HR5 (hitrate at 5) indicator was used for assessment, that is the
proportion of users for whom at least one relevant object was among the first 5 recommendations.
The following notations are used: k is the number of users, p is the number of objects, n is the
number of features and M is the number of rows in the training sample. The characteristics of the
considered problems are presented in the Table 1.

The aim of the work was to study the dependence of the algorithm accuracy in terms of the HR5
indicator on the depth of the trees and the parameter μ. The results for the game0 and sticker1
tasks are presented in the Table 2 and 3, respectively. The value μ = 0 corresponds to the usual
random decision forest (RF) model.
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Table 1. Characteristics of the problems considered

problem k p n M

game0 414 187 41 4132

game1 1706 190 41 16 327

game2 3888 398 55 29 065

sticker1 2685 118 40 27 032

sticker2 5942 197 41 44 613

Table 2. Relationship between HR(5) and tree depth and
parameter μ for the game0 problem

μ = 0.0 μ = 0.25 μ = 0.5 μ = 0.75 μ = 0.9

depth = 3 0.584 0.594 0.599 0.613 0.640

depth = 5 0.596 0.604 0.623 0.630 0.657

depth = 7 0.591 0.606 0.621 0.621 0.623

depth = 9 0.592 0.618 0.606 0.606 0.570

depth = 11 0.606 0.601 0.606 0.611 0.493

Table 3. Relationship between HR(5) and tree depth and
parameter μ for the sticker1 problem

μ = 0.0 μ = 0.25 μ = 0.5 μ = 0.75 μ = 0.9

depth = 3 0.447 0.449 0.448 0.458 0.514

depth = 5 0.482 0.488 0.498 0.516 0.527

depth = 7 0.475 0.491 0.501 0.508 0.513

depth = 9 0.479 0.492 0.500 0.507 0.477

depth = 11 0.482 0.494 0.499 0.494 0.467

Table 4. The best HR(5) value for each of the models

RF DDF (μ �= 0) catboost

games0 0.606 0.657 0.664

games1 0.642 0.654 0.637

games2 0.513 0.550 0.562

stickers1 0.482 0.527 0.513

stickers2 0.337 0.372 0.385

mean 0.516 0.552 0.5522

The tables show that when the tree depth does not exceed 7 the HR(5) increases with the growth
of μ. At the same time, when the tree depth is greater than 7, the HR(5) indicator decreases.

Table 4 presents a comparison of the proposed technology with standard random decision forests,
as well as with the CatBoost method. Standard decision forests correspond to μ = 0. The table
shows that the accuracy in terms of the HR5 metric for the proposed technology significantly
exceeds the accuracy of the random decision forest and is close to the accuracy of the CatBoost
method.

5. CONCLUSION

A divergent decision forest method has been developed for solving binary classification problems.
The method is based on the development of approaches previously proposed for solving regression
problems [9–11]. Using the example of problems related to recommender systems, a study of the
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divergent decision forest (DDF) method was conducted. The method is based on achieving higher
divergence in the prediction space in comparison with the standard random decision forest.

A significant dependence of the efficiency on the tree depth and on the coefficient μ, which reg-
ulates the relative contributions of the components responsible for the approximation of the target
variable and the divergence of ensembles, is shown. At the same time, with a small tree depth,
the accuracy of the algorithm increases with an increase in μ. Such an effect is not observed with
a large tree depth. However, in general, DDF outperforms the standard random decision forest
corresponding to μ = 0. Experiments have shown that the efficiency of DDF is close to the well-
known boosting model CatBoost. The DDF method is based on sequential generation of tree sets.
Therefore, its Performance is close to the performance of conventional random forests and gradient
boosting variants. One of the problems of the method is the choice of the optimal value of the
hyperparameter μ. This problem can be solved using known tools for choosing hyperparameters.
However, experiments indicate that higher efficiency is achieved with high values of the hyperpa-
rameter, that is, with μ equal to 0.8 or 0.9. Unlike the methods of decision and regression trees,
which have high transparency and interpretability, methods using large ensembles of trees, unfor-
tunately, lose these properties. The latter also applies to the DDF method. This drawback can be
compensated by various known methods for achieving interpretability. Data mining methods and
statistical analysis can also be used to increase transparency.
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